Frequency-To-Analog Converter

WARNING: Allow only qualified personnel to perform the following tasks. Follow the safety instructions in this document and all other related documentation.

NOTE: The label on the side of the frequency-to-analog converter makes references to the *IFMA Bulletin* for setup, hookup and operating instructions. This instruction sheet replaces the *IFMA Bulletin* and applies only to CanNeck system installations. Contact your Nordson Corporation representative for information about installing this converter in other systems.

See Figure 1. The frequency-to-analog converter receives an input signal from a proximity sensor and converts it into a 0–10 Vdc output. The voltage output is proportional to the line speed, which is measured in number of cans per second.

The converter consists of a

- rotary switch (1) for entering values
- seven-position DIP switch (2) for mode selection
- push-button (3) to store values
- red output LED (5)
- green input LED (9)

1. Introduction

1. Introduction (contd)



Fig. 1 Frequency-To-Analog Converter

- 1. Rotary switch
- 2. DIP switch
- 3. Push-button
- 4. ac power connections
- 5. Red output LED
- 6. Proximity sensor connection (+12 Vdc common)
- *Note:* When connecting wires to the converter, refer to the decal on the unit for terminal locations.
- 7. Proximity sensor connection (input signal)
- 8. Proximity sensor connection (+12 Vdc output)
- 9. Green input LED
- 10. V-
- 11. V+

See Figure 2 for terminal locations and Table 1 for terminal functions.

Terminal(s)	Function					
4 and 6	Provides a 0–10 Vdc output signal proportional to line speed					
7	Provides +12 Vdc output signal to the proximity sensor					
8	Provides an input signal from the proximity sensor					
9	Provides a +12 Vdc common to the proximity sensor					
10 and 12	115 or 240 Vac power connections					
1, 2, 3, 5, and 11	Not used					

Table 1 Terminal Functions

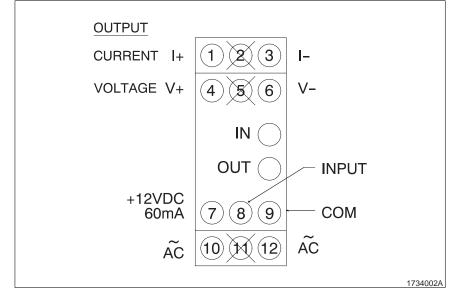


Fig. 2 Terminals

2. Configuration Setup		Perform er into se		rocedur	es before	e installir	ng and p	utting th	is
Electrical Connections					Vac pow	er to terr	ninals 1	0 and 12	2.
Green Input LED	(0–9) at (¹ / ₂ sec of 0 is ir LED ind	a 1-Hz r on, ¹ / ₂ s idicated	ate. Fo ec off). by a sin e entire	r examp A setting gle shor value, tl	le, a sett g of 9 is t flash (4 he conve	ing of 1 indicated 0 msec	is indica d by 9 bl on, 1 se	ted by o inks. A c off). A	setting .fter the
<i>Sensor Input and Operating Mode</i>	See Fig 1. Set t	ure 1. the DIP :	switches	(2) as f	ollows:				T . 1
	ON	\downarrow	\downarrow	↑	↑	↑	\downarrow	↓	\downarrow

\uparrow	OFF							
		1	2	3	4	5	6	7

- 2. Press the push-button (3). The green input LED (9) blinks rapidly.
- 3. Turn the rotary switch (1) to 2.
- 4. Press the push-button. The green input LED blinks twice, pauses, and repeats the pattern.
- 5. Set DIP switch 4 to OFF. The red output (5) LED comes on in about 4 seconds.

See Figure 1. Perform the following steps to configure the converter for a minimum response time of 5 msec.

1. Set these DIP switches (2):

ON ↑	↓ OFF	1	\downarrow	↑	\uparrow
		4	5	6	7

2. Press the push-button (3). The green input LED (9) blinks rapidly.

Minimum Response Time

- 3. Turn the rotary switch (1) to 0.
- 4. Press the push-button (3). The green input LED blinks once, pauses, and repeats the pattern.
- 5. Set DIP switch 4 to OFF. The red output LED (5) comes on in about 4 seconds.

Maximum Response Time

Maximum Line Speed

See Figure 1. Perform the following steps to configure the converter for a maximum response time of 5 sec.

1. Set these DIP switches (2):

ON	\downarrow	\uparrow	\uparrow	\downarrow	\downarrow
\uparrow	OFF				
		4	5	6	7

- 2. Press the push-button (3). The green input LED (9) blinks rapidly.
- 3. Turn the rotary switch (1) to 8.
- 4. Press the push-button. The green input LED blinks eight times, pauses, and repeats the pattern.
- 5. Set DIP switch 4 to OFF. The red output LED (5) comes on in about 4 seconds.

NOTE: The following is an example of how to determine and enter a maximum line speed value.

1. Use the following equation to determine the maximum line speed value in cans per second:

Cans per minute = cans per second

Example:	2200 cans per min	= 36.6 cans per second
	60	(Round up to 37)

Six digits must be entered for a line speed value of 37: 3 7 0 0 0 [3]

NOTE: The sixth digit, [3], indicates the number of decimal places the line speed value is to the left.

© 2000 Nordson Corporation

All rights reserved

Maximum Line Speed (contd)

2. See Figure 1. Set these DIP switches (2):

ON ↑	↓ OFF	\uparrow	\downarrow	\uparrow	\downarrow
		4	5	6	7

3. Press the push-button (3). The green input LED (9) blinks rapidly.

NOTE: The green input LED blinks rapidly until all digits are entered.

4. Enter the line speed value, In this example,

Turn the rotary switch to	Then				
3	Press the push-button after each selection.				
7					
0					
0					
0					
3*					
* This digit indicates	* This digit indicates decimal places to the left.				

NOTE: The green input LED blinks slow for each selection with the exception of 0. It blinks very rapidly for each 0 selection.

 Verify the correct line speed value by watching the green LED blink. If the line speed value is incorrect, set DIP switch 4 to OFF and repeat steps 1 through 5.

NOTE: After the green input LED indicates the entire value, it pauses for 2 seconds and repeats the value.

- 6. Set DIP switch 4 to OFF. The red output LED (5) comes on in about 4 seconds. Configuration setup is complete.
- 7. Remove power from the converter.
- 8. Perform the Installation procedure.

7

3. Installation

WARNING: Disconnect equipment from the line voltage. Failure to observe this warning may cause personal injury or equipment damage.

- 1. Open the enclosure door and gain access to the old converter.
- 2. Disconnect the wires from the old converter.
- 3. See Figure 3. Remove the old converter from the DIN rail.
- 4. Install the new converter on the DIN rail.

NOTE: The terminal locations are marked on the wires.

- 5. Connect the wires to the converter.
- 6. Close the enclosure door.

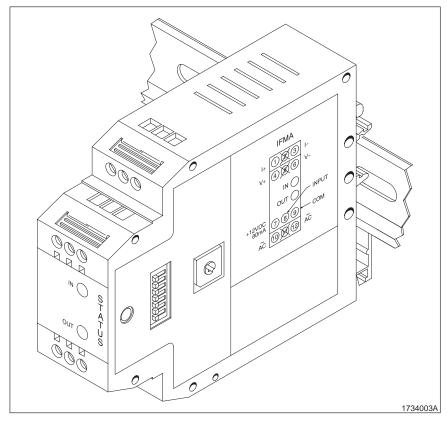


Fig. 3 Removing the Converter from DIN Rail

4. Electrical Data

See Figure 4. Refer to the CanNeck circuit wiring diagram for connections to the analog converter.

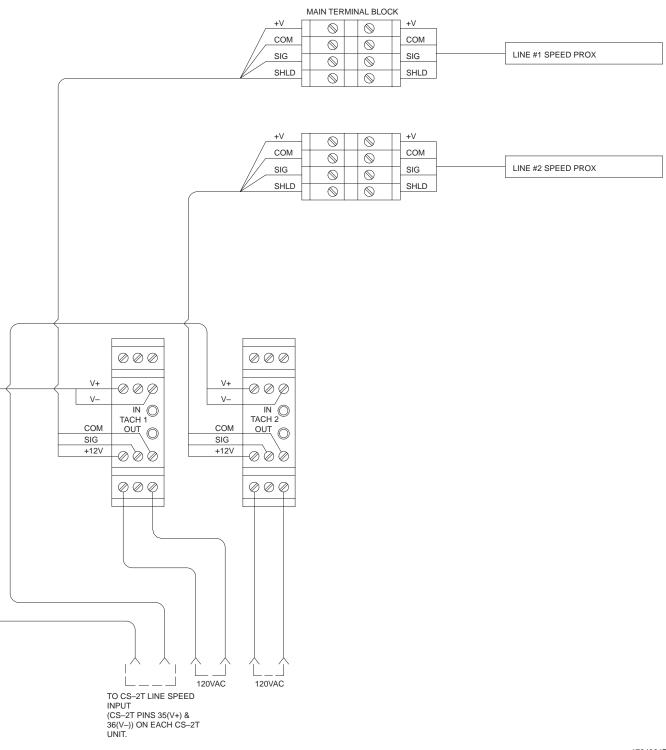


Fig. 4 Wiring Diagram

1734004B

PartsUse the following part number to order a frequency-to-analog converter.

Part	Description	Quantity
249 955	Converter, frequency to analog	1

Original copyright date 1998. Nordson and the Nordson logo are registered trademarks of Nordson Corporation.

CanNeck is a trademark of Nordson Corporation.

5.