Part A, Section 2

Description

This section covers the following unit configurations.

<table>
<thead>
<tr>
<th>Model</th>
<th>3100V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>1, 2</td>
</tr>
<tr>
<td>Pump</td>
<td>AC Gear (K or L)</td>
</tr>
<tr>
<td>Manifold</td>
<td>4-Port (J)</td>
</tr>
<tr>
<td>Control</td>
<td>Vista Standard (V)</td>
</tr>
</tbody>
</table>
Section A 2
Description

1. Intended Use

Series 3100V applicators may be used only to melt and pump hot melt material. They are not intended for use with polyurethane-reactive hot melt material. Use the applicators only as described in this manual.

2. Overview

This manual describes how to install, operate, and service a Series 3100V applicator. It also explains how the applicator works with other major components of a hot melt system.

This section of the manual describes the key parts of the applicator and how they work. It includes the following topics:

- Functional Description
- Major Components
- Control System
- Specifications
- Dimensions
- Explanation of Configuration Code

For information about any options or accessories you may have ordered with your unit, refer to the Options section.
3. Functional Description

The Series 3100V applicator is the main component of your hot melt system. The applicator melts the adhesive, controls it at your setpoint (operating) temperatures, and pumps it through hoses to the dispensing guns. The dispensing guns apply the adhesive to the surface of your product or package.

Figure A 2-1 shows a Series 3100V applicator along with other key components of a hot melt system.

The applicator has three basic modes of operation:

- the startup mode
- the operating mode
- the standby mode

Each mode is briefly described in the following paragraphs.
During a sequential startup, when the clock timer or an operator turns the system on, the tank and hoses begin to heat first. After the temperatures of the tank and hoses are all within 19.5 °C (35 °F) of their setpoint temperatures, the guns begin to heat. When the tank, hoses, and guns are within 3 °C (5 °F) of their setpoint temperatures, a time delay begins. The time delay, which you can adjust, provides additional time for the material in the tank to melt. At the end of the time delay, the green READY light turns on, indicating that the pump can be turned on.

The capability to heat all zones simultaneously is also available.

When you trigger a gun, the pump draws in the melted adhesive and sends it through a manifold, a filter, and a hose to the gun, which then applies the adhesive to the product or package surface. In most systems, an air-operated automatic gun is used to apply the melted adhesive. An electrically driven gun or a handgun may also be used to apply adhesive.

When you place the applicator in the standby mode, the control system disables the pump and reduces the temperature of all heating zones to the standby temperature setpoints you have selected. You can use the standby mode to keep the adhesive warm when normal operation must be interrupted for a while. The lower temperature reduces char formation and conserves energy.
4. **Major Components**

The major components of the applicator are briefly described on the following pages.

![Diagram of a Typical Series 3100V Applicator]

Fig. A 2-2 Major Components of a Typical Series 3100V Applicator

1. Pump and motor assembly
2. Tank
3. Manifold components
4. Operator panel
Tank

The tank melts the adhesive and holds it until it is pumped to the dispensing guns. With its aluminum construction, cast-in heaters, and integral melting fins, the tank is designed for efficient heat transfer. A strainer in the tank prevents unmelted adhesive from blocking the pump inlet when you fill the tank. It also prevents pieces of cardboard and other small objects from entering the pump.

The standard tank is PTFE-coated for easy cleaning. A non-coated tank is available on some units.

Refer to Specifications in this section for the tank storage capacity and other key information about the tank.

Fig. A 2-3 Key Parts of the Tank

1. Tank casting
2. Strainer
3. Melting fins
4. Heater connectors
The gear pump transfers the melted adhesive from the tank to the dispensing guns. Driven at a constant speed by an AC motor, the pump delivers an uninterrupted flow of adhesive through the manifold and hoses to the dispensing guns.

The pump has two main parts:

- an AC motor
- a gear pump

Refer to Specifications in this section for the pump delivery rate and other key information about the pump and motor.

Fig. A 2-4 Key Parts of the Pump

1. AC motor
2. Gear pump
Manifold

The manifold directs the flow of adhesive from the pump to the filter and from the filter to the hoses.

The manifold has five main parts:
- a manifold block with hose connectors
- a manifold filter
- a drain valve
- a pressure control valve
- a pressure relief valve

![Manifold Block and Hose Connectors](image)

Fig. A 2-5 Key Parts of the Manifold

1. Manifold block with hose connectors
2. Drain valve
3. Manifold filter
4. Pressure control valve
5. Pressure relief valve

Manifold Block and Hose Connectors

The manifold block has a 45-degree face for either horizontal or vertical hose routing. A maximum of four hoses can be connected to the manifold.

Manifold Filter

The manifold filter traps any char or foreign material, keeping it from being pumped to the dispensing guns. The applicator is shipped with a 0.15-mm (0.006-in.) filter screen. Other screen sizes are available.
Drain Valve

The drain valve allows you to drain the tank and manifold or to flush char and debris from the filter screen. Operators can perform the filter flushing procedure without removing the filter from the manifold.

Pressure Control Valve

The pressure control valve operates as follows: when the applicator is dispensing adhesive, the valve is closed so that all of the adhesive is supplied to the dispensing guns. When the guns close, pressure begins to build in the system. If the guns remain closed long enough, the pressure will reach the pressure control valve’s pressure setting. At this point, the valve will open to maintain pressure by allowing some of the adhesive to flow back into the tank.

Figure A 2-6 shows the components of a typical hot melt system and the path that melted adhesive follows when being pumped through the system.
Fig. A 2-6 Adhesive Flow Path of a Typical Hot Melt System

4. Pressure relief valve
Operator Panel

The operator panel provides the controls and indicators you need to program, operate, and monitor your hot melt system. The key functions of the operator panel are described in the next part of this section, Control System.

5. Control System

The control system regulates all temperature settings and controls how the unit functions. The operator panel allows you to program the system to meet changing needs:

- Heated zones are controlled individually, giving you more flexibility in setting up your system.
- With the seven-day clock feature, you can tailor operations for a week at a time, with different schedules for each day of the week.

The control system is designed so that a brownout or power failure will not cause a loss of your programmed settings.
Features of the Operator Panel

The operator panel provides the controls, indicators, and messages needed to operate the system. It is divided into four functional areas:

- System Status
- Displays
- System Setup
- System Controls

Fig. A 2-7 Operator Panel

1. System Status area
2. Displays area
3. System Setup area
4. System Controls area
System Status Area

The System Status area of the operator panel gives you a quick summary of the status of your system. The FAULT and READY lights let you know if the system is prepared for operation.

![Vista™ Operator Panel](image)

Fig. A 2-8 System Status Area

1. FAULT light
2. READY light

FAULT Light

The red FAULT light indicates different types of fault conditions. Refer to Table A 2-1.

<table>
<thead>
<tr>
<th>FAULT Light Status (see Note)</th>
<th>System Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAULT light turns on and stays on.</td>
<td>A heater zone is overtemperature.</td>
</tr>
<tr>
<td>FAULT light flashes for two minutes, then stays on.</td>
<td>A resistance temperature detector (RTD) in any zone is open or shorted.</td>
</tr>
<tr>
<td>FAULT light flashes continuously.</td>
<td>A heater zone is out of band, either high or low.</td>
</tr>
<tr>
<td></td>
<td>A heater zone is more than 19.5 °C (35 °F) under the setpoint temperature.</td>
</tr>
</tbody>
</table>

NOTE: When the FAULT light turns on and stays on, the system removes heater power for all zones. When the FAULT light flashes, heater power stays on.
READY Light

The green READY light turns on when the following conditions exist:

- All zones are within \(+/- 3 \degree C\) \(+/- 5 \degree F\) of the setpoint temperatures.
- The system-ready time delay has elapsed.
- No faults exist.

Displays Area

The Displays area of the operator panel gives you detailed information about the status of your system. When you are running the system, it shows the status of each heating zone. When you are customizing the system, it shows your current system setup.

![Displays Area Diagram](4130011)

Fig. A 2-9 Displays Area

1. Selector display
2. Multipurpose display
3. Actual temperature display
4. Enter key
5. Up and Down keys
6. Up key
Selector Display and Up Key

The Selector display allows you to access information about the status of your system during operation and system setup. The display

- shows the selected zone number when used with TEMPERATURE and when scanning
- shows the day when used with CLOCK
- shows the feature number when used with SYSTEM SETTINGS

The Up key, which is located below the Selector display, changes the value of a setting.

Multipurpose Display and Keys

During normal operation, the Multipurpose display shows the setpoint temperature for a selected zone. This allows you to compare the actual temperature of the displayed zone with its targeted temperature.

Actual Temperature Display

The Actual Temperature display shows the actual temperature of the heated zone. When the scan mode is enabled, each zone is displayed in sequence. When the scan mode is disabled, only the temperature for the selected zone is displayed.

Enter Key

The Enter key saves the number shown in the Multipurpose display.
System Setup Area

The System Setup area of the operator panel allows you to customize the system to your needs. From this area you can control:

- the temperature at which each zone operates (TEMPERATURE)
- how the unit operates (SYSTEM SETTINGS)
- when the system operates (CLOCK)

To customize system controls, use the keys in the System Setup area in conjunction with the keys in the Displays area.

Move Up and Move Down Keys

The Move Up and Move Down keys select features within the System Setup area, allowing you to tailor the system to your needs. You can select the following features using the Move Up and Move Down keys:

- SETPOINT temperature
- STANDBY temperature
- SYSTEM SETTINGS
- SET TIME
- ENTER STANDBY
- EXIT STANDBY
- HEATERS ON
- HEATERS OFF

Fig. A 2-10 System Setup Area

1. Move Up and Move Down keys
2. Move Right key
3. TEMPERATURE area
4. SYSTEM SETTINGS area
5. CLOCK area
Move Right Key

The Move Right key selects features within the System Setup area, allowing you to tailor the system to your needs. You can select the following features using the Move Right key:

- INTERNAL zone
- HOSE zone
- GUN zone
- INTERVAL 1
- INTERVAL 2

TEMPERATURE Area

The TEMPERATURE area of System Setup allows you to program the setpoint and standby temperatures for three types of heated zones: internal, hose, or gun.

When used in the TEMPERATURE area,

- The Move Up and Move Down keys select SETPOINT or STANDBY.
- The Move Right key selects the zone type (internal, hose, or gun) for programming temperatures (standby or setpoint).
SYSTEM SETTINGS Area

From the SYSTEM SETTINGS area, you can customize or check the settings of the following system features:

- password enable
- system-ready time delay
- overtemperature setpoint
- Celsius or Fahrenheit units
- global temperature bands
- individual temperature bands
- sequential startup or simultaneous startup
- display heater proportioning
- warning or power notification
- ready or pump notification
- auto-energize heaters
- time with heaters on
- fault log display

CLOCK Area

From the CLOCK area you can program the system to turn heaters on or off or to place the system in standby or operating mode at a time that you select. The clock stores two sets of times, referred to as intervals. Each interval stores four settings as shown in Table A 2-2.

<table>
<thead>
<tr>
<th>Table A 2-2 Interval Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERVAL 1</td>
</tr>
<tr>
<td>Standby Settings</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Heater Settings</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
System Controls Area

The System Controls area of the operator panel allows you to control basic system operations and override programmed controls. The lights in this area tell you whether a feature is on or off. Using the keys and switches in this area, you can

- Monitor the status of a particular zone, or scan each zone to check its status.
- Take the system into or out of standby.
- Turn the heaters on or off.
- Turn the clock feature on or off. (This is useful when you do not want the system to startup automatically.)
- Turn the pump on or off.
- Run a system test to determine whether a fault that the system has detected was corrected.
- Turn main power to the applicator on or off.

Fig. A 2-11 System Controls Area

1. MONITOR/SCAN key and light
2. STANDBY key and light
3. HEATERS key and light
4. CLOCK key and light
5. PUMP key and light
6. CLEAR FAULTS key
7. POWER switch
MONITOR/SCAN Key and Light

Pressing the MONITOR/SCAN key places the system in the monitor or scan mode. In the scan mode,

- The system scans each heated zone, displaying each zone’s temperature in sequence.

- If the system-ready time delay feature is active, the system shows the number of minutes remaining until the system is ready for operation.

- The MONITOR/SCAN light turns on and stays on.

In the monitor mode,

- The system displays the temperature of only the zone currently selected.

- If the system-ready time delay feature is active and is currently selected for monitoring, the system shows the number of minutes remaining until the system is ready for operation.

- The MONITOR/SCAN light stays on.
STANDBY Key and Light

Pressing the STANDBY key when the HEATERS light is on takes the system into or out of the standby mode. When the standby feature is active,

- The STANDBY light turns on.
- The READY light turns off.
- The pump turns off.
- Temperatures on all zones drop until the temperature of each zone reaches the preselected standby temperature.
- The HEATERS light remains on.

If the HEATERS light is not on, you cannot place the system in the standby mode.

When the standby feature is disabled,

- The STANDBY light turns off.
- The heaters turn on and all zones begin heating.
- After all zones have reached their preselected setpoint temperature, the READY light turns on.

HEATERS Key and Light

Pressing the HEATERS key turns power to the heaters on and off. The heaters must be turned on for the unit to operate.

The HEATERS light turns on when this feature is active.

NOTE: If the system is set for auto-energize heaters, the heaters are automatically enabled and the HEATERS light turns on when the POWER switch is turned on.
CLOCK Key and Light

Pressing the CLOCK key turns the seven-day clock on and off. When the clock is on, the system is controlled by the settings for ENTER STANDBY, EXIT STANDBY, HEATERS ON, and HEATERS OFF.

The CLOCK light turns on when this feature is active.

NOTE: If the clock feature is enabled when the POWER switch is turned off, it will automatically be enabled when the switch is turned back on. The CLOCK light will turn on to show that the clock feature is enabled.

PUMP Key and Light

Pressing the PUMP key turns the pump on and off. The PUMP light turns on when this feature is active.

CLEAR FAULTS Key

Pressing the CLEAR FAULTS key runs a system test. The test lasts five seconds and verifies that the problem causing a system fault was corrected. If the problem was corrected, the FAULT light in the System Status area of the operator panel will turn off once the test is completed. If the problem was not corrected, the FAULT light will stay on.

POWER Switch

Pressing the POWER switch turns power to the applicator on or off.
6. Specifications

Table A 2-3 Applicator Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight of Empty Unit</td>
<td>44 kg (97 lb)</td>
<td></td>
</tr>
<tr>
<td>Weight of Full Unit</td>
<td>47.6 kg (105 lb)</td>
<td></td>
</tr>
<tr>
<td>Hose Ports</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Melt Rate</td>
<td>3.6 kg/hr (8 lb/hr)</td>
<td></td>
</tr>
<tr>
<td>Work Place Temperature Range</td>
<td>0–40 °C (32–104 °F)</td>
<td></td>
</tr>
<tr>
<td>Noise Level</td>
<td>64 dB (A) at maximum pump speed</td>
<td>A</td>
</tr>
<tr>
<td>Electrical/Controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Service</td>
<td>200–240 Vac 1∅ or 3∅</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>230 Vac (with neutral) 1∅ or 400/230 Vac (with neutral) 3∅</td>
<td></td>
</tr>
<tr>
<td>Hose/Gun Heating Capacity</td>
<td>2 or 4 hose/gun pairs</td>
<td>C</td>
</tr>
<tr>
<td>Control Temperature Range</td>
<td>38–232 °C (100–450 °F)</td>
<td></td>
</tr>
<tr>
<td>Control Temperature Accuracy</td>
<td>+/- 0.5 °C (+/- 1 °F)</td>
<td>D</td>
</tr>
<tr>
<td>Motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/3 hp 230 Vac (50/60 Hz)</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>1/3 hp 250 Vac (50 Hz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/3 hp 200 Vac (50 Hz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity</td>
<td>800–30,000 mPa•s (up to 30,000 cps)</td>
<td></td>
</tr>
<tr>
<td>Hydraulic Pressure (maximum while running)</td>
<td>8300 kPa (1200 psi)</td>
<td></td>
</tr>
<tr>
<td>Output Rate (maximum)</td>
<td>1/3 hp 230 or 250 Vac gear pump: 410 g/min (0.90 lb/min)</td>
<td>D, E</td>
</tr>
<tr>
<td></td>
<td>1/3 hp 200 Vac gear pump: 350 g/min (0.80 lb/min)</td>
<td></td>
</tr>
<tr>
<td>Speed (maximum)</td>
<td>1/3 hp 230 or 250 Vac gear pump: 139 rev/min (60 Hz)</td>
<td>D</td>
</tr>
<tr>
<td>Tank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>3.6 kg (8 lb)</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>3.7 liters (230 in.³)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE A: The noise level is measured at a distance of 1 m from the surface of the unit and at a height of 1.6 m from the access platform.

B: To determine the electrical service of your unit, refer to *Explanation of Configuration Code* at the end of this section.

C: To determine the number of hose and gun pairs that your unit can heat, refer to *Explanation of Configuration Code* at the end of this section.

D: To determine the motor voltage of the pump on your unit, refer to *Explanation of Configuration Code* at the end of this section.

E: The output rate is based on a material density of 0.84 g/ml (0.03 lb/in.³) and a specific gravity of 0.84.
7. Dimensions

Table A 2-4 Series 3100V Applicator Dimensions in Millimeters (Inches)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>mm (in.)</th>
<th>Note</th>
<th>Dimension</th>
<th>mm (in.)</th>
<th>Note</th>
<th>Dimension</th>
<th>mm (in.)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>207 (8.16)</td>
<td>1</td>
<td>F</td>
<td>381 (15.00)</td>
<td>K</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>298 (11.75)</td>
<td>2</td>
<td>G</td>
<td>343 (13.50)</td>
<td>L</td>
<td>62 (2.24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>38 (1.50)</td>
<td>3</td>
<td>H</td>
<td>249 (9.80)</td>
<td>M</td>
<td>110 (4.32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>375 (14.77)</td>
<td>4</td>
<td>I</td>
<td>322 (12.69)</td>
<td>N</td>
<td>165 (6.50)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>595 (23.42)</td>
<td></td>
<td>J</td>
<td>697 (27.44)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1. Clearance needed to remove filter.
 2. Clearance needed to open control panel.
 3. Clearance needed to remove electrical enclosure cover.
 4. Clearance needed to remove pump enclosure.
 5. Size of tank opening = 140 mm x 125 mm (5.50 in. x 4.91 in.).
8. Explanation of Configuration Code

To determine the features, options, and specifications your unit has, check the unit number (configuration code) printed on your shipping order or on your unit. To find the code on your unit, look at the identification plate located above the hose ports (see Figure A 2-13).

Once you have located the configuration code, refer to the following code descriptions and example to determine the specific features and options of your unit.

Fig. A 2-13 Location of Unit Number (Configuration Code)
Code Descriptions

To determine the features and options specific to your unit, match the code in each code position (Boxes 1–11) to the codes in the following chart. The chart provides a description for each code. For more information, see the example following the chart.

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage</th>
<th>Pump/Drive</th>
<th>Manifold/Filter</th>
<th>Vista Controls</th>
<th>Electrical Control</th>
<th>Language Tags</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8-11</td>
</tr>
</tbody>
</table>

Box 1
- **Model**
 - Series 3100V
 - Series 3400V
 - Series 3500V
 - Series 3700V
 - Series 3830V
 - Series 3860V
 - Series 3890V
 - Series 3930V
 - Series 3960V

Box 2
- **Voltage**
 - 200-240 VAC 1Ø or 3Ø
 - 230 VAC (with neutral) 1Ø, or 400/230 VAC (with neutral) 3Ø
 - 400 VAC 3Ø

Box 3
- **Pump/Drive**
 - 6:1 piston pump
 - 14:1 piston pump
 - 21:1 piston pump
 - 1/3 hp 230 Vac (50/60 Hz) drive gear pump
 - 1/3 hp 250 Vac (50 Hz) drive gear pump
 - 1/3 hp 200 Vac (50 Hz) drive gear pump

Box 4
- **Manifold/Filter**
 - Non-circulating 4-port manifold with standard filter
 - Non-circulating 6-port manifold with standard filter
 - Non-circulating 6-port manifold with reverse-flush filter
 - Non-circulating 4-port manifold with standard filter and pressure control valve
 - Externally circulating 2-port manifold with circulation valve and standard filter
 - Externally circulating 2-port manifold with circulation valve and reverse-flush filter

Code Descriptions

- 1: 200-240 VAC 1Ø or 3Ø
- 2: 230 VAC (with neutral) 1Ø, or 400/230 VAC (with neutral) 3Ø
- 3: 400 VAC 3Ø
- 4: 6:1 piston pump
- 5: 14:1 piston pump
- 6: 21:1 piston pump
- 7: 1/3 hp 230 Vac (50/60 Hz) drive gear pump
- 8: 1/3 hp 250 Vac (50 Hz) drive gear pump
- 9: 1/3 hp 200 Vac (50 Hz) drive gear pump
- 10: Non-circulating 4-port manifold with standard filter
- 11: Non-circulating 6-port manifold with standard filter
- 12: Non-circulating 6-port manifold with reverse-flush filter
- 13: Non-circulating 4-port manifold with standard filter and pressure control valve
- 14: Externally circulating 2-port manifold with circulation valve and standard filter
- 15: Externally circulating 2-port manifold with circulation valve and reverse-flush filter
Code Description (contd.)

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage</th>
<th>Pump/Drive</th>
<th>Manifold/Filter</th>
<th>Vista Controls</th>
<th>Electrical Control Capacity</th>
<th>Language Tags</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8-11</td>
</tr>
</tbody>
</table>

Box 5

Vista Controls

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Vista control (standard)</td>
</tr>
<tr>
<td>P</td>
<td>Vista pattern control (PC)</td>
</tr>
<tr>
<td>T</td>
<td>Vista temperature control (TC)</td>
</tr>
</tbody>
</table>

Box 6

Electrical Control Capacity

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 hose/gun pairs</td>
</tr>
<tr>
<td>4</td>
<td>4 hose/gun pairs</td>
</tr>
<tr>
<td>6</td>
<td>6 hose/gun pairs</td>
</tr>
</tbody>
</table>

Box 7

Language Tags

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>English/German</td>
</tr>
<tr>
<td>F</td>
<td>English/French</td>
</tr>
<tr>
<td>N</td>
<td>English/Japanese</td>
</tr>
</tbody>
</table>

Box 8-11

Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Low-level indicator</td>
</tr>
<tr>
<td>G</td>
<td>Input/output board (standard)</td>
</tr>
<tr>
<td>H</td>
<td>Input/output board with hose/gun disable (enhanced)</td>
</tr>
<tr>
<td>J</td>
<td>Input/output board for TC controller</td>
</tr>
<tr>
<td>R</td>
<td>CE certification</td>
</tr>
</tbody>
</table>
Example

The following example shows how the code 3400V-2EAV4D/AR can be used to determine the features and options of the unit.

<table>
<thead>
<tr>
<th>Box</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Series 3400V</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>230 Vac (with neutral) 1Ø service or 400/230 Vac (with neutral) 3Ø service</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>14:1 piston pump</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Non-circulating 4-port manifold with a standard filter</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Standard Vista control system</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Electrical capacity for heating 4 hose/gun pairs</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Unit tags in English and German</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Low-level indicator included as an option</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>CE certification included as an option</td>
<td></td>
</tr>
</tbody>
</table>

NOTE A: All units are shipped ready for three-phase operation but include a voltage plug (and a wiring harness on some units) that allows you to quickly convert from three-phase operation to single-phase operation. Refer to Preparing the Unit for Single-Phase Operation in the Installation section.